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Abstract

We introduce a new generative approach for synthesizing
3D geometry and images from single-view collections. Most
existing approaches predict volumetric density to render
multi-view consistent images. By employing volumetric ren-
dering using neural radiance fields, they inherit a key limi-
tation: the generated geometry is noisy and unconstrained,
limiting the quality and utility of the output meshes. To ad-
dress this issue, we propose GeoGen, a new SDF-based 3D
generative model trained in an end-to-end manner. Initially,
we reinterpret the volumetric density as a Signed Distance
Function (SDF). This allows us to introduce useful priors
to generate valid meshes. However, those priors prevent
the generative model from learning details, limiting the ap-
plicability of the method to real-world scenarios. To alle-
viate that problem, we make the transformation learnable
and constrain the rendered depth map to be consistent with
the zero-level set of the SDF. Through the lens of adversar-
ial training, we encourage the network to produce higher
fidelity details on the output meshes. For evaluation, we in-
troduce a synthetic dataset of human avatars captured from
360-degree camera angles, to overcome the challenges pre-
sented by real-world datasets, which often lack 3D consis-
tency and do not cover all camera angles. Our experiments
on multiple datasets show that GeoGen produces visually
and quantitatively better geometry than the previous gener-
ative models based on neural radiance fields.

1. Introduction
The combination of generative models [19–21, 26] and im-

plicit neural representations [7, 25, 32] has sparked consid-
erable advancements in 3D representation learning [4, 14].
It has powered the synthesis of high-quality, multi-view
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consistent, images. However, a common pitfall in the pur-
suit of higher image quality is the sidelining of the quality
of the underlying geometry [43].

Recent non-generative efforts, such as NeuS [39],
VolSDF [43], and Geo-Neus [11], have made use of the
zero-level set of a Signed Distance Function (SDF) to rep-
resent the surface of the geometry in a scene via a surface
rendering equation, ultimately achieving high-fidelity scene
reconstruction. While these models have shown impressive
potential, given their non-generative nature, they are only
able to reconstruct a scene of interest when multi-view im-
age data is available. This limitation highlights the need
for generative models capable of producing high-quality 2D
images that are suitable for content creation while ensuring
precise geometric synthesis without multi-view data.

Other recent methods such as Ball-GAN [36], and
EG3D [5], have combined generative models with Neural
Radiance Fields (NeRFs) [26] to yield high quality rendered
images. Yet, these approaches often result in noisy meshes
that contain geometric artifacts, which emerge due to the
properties of NeRFs and their lack of constraints on the ge-
ometric reconstructions. Attempts have also been made to
harmonize SDFs with generative models as in [31]. How-
ever, the generated meshes are often overly smooth, a result
of the smoothing prior that encourages the SDF to produce
valid values everywhere in 3D space. Additionally, apply-
ing this loss can be prohibitive at higher resolutions.

In this work, we address these issues by adding SDF con-
straints to improve the synthesized geometry of a 3D-aware
generative model. Our approach, named GeoGen, employs
an SDF depth map consistency loss for enhanced geometric
generation. Specifically, we build on EG3D [5] by intro-
ducing an SDF representation, instead of a density repre-
sentation, to encode the geometry. This allows GeoGen to
extract mesh surfaces directly from the zero-level set of the
SDF [30, 39, 43]. In order to make the SDF representation
learning feasible, and to endow it with the ability to model



complex and detailed geometry, we also propose an SDF
depth map consistency loss. We use a fixed density-to-SDF
transformation function to convert the density representa-
tion to an SDF. This facilitates generative feature learning
by making the learning objective easier to optimize. The
SDF also enables the extraction of smooth depth maps that
serve as a ‘pseudo’ ground-truth. Our approach uses its own
depth prediction in a self-supervised manner to improve the
reconstruction. In contrast to commonly used priors, our
approach is cheap to compute with only a minor increase in
training time.

GeoGen is able to generate detailed meshes from a single
input 2D image via inversion [33]. This capability is valu-
able in applications where the requirement for detailed and
realistic meshes is needed. In stark contrast to recent meth-
ods like Rodin [40], which required 30 million images dur-
ing training to create 3D meshes, GeoGen uses a fraction of
this number – approximately 50,000 images. Other meth-
ods such as PanoHead [1] propose an augmented triplane
and separate foreground and background in 2D images with
the help of a custom in-house dataset. However, with our
proposed architecture, we show that by enforcing our geo-
metric constraints, we are able to reconstruct a detailed 360◦

geometry, with a reduction in visual artifacts (e.g. the backs
of heads) compared to methods such as EG3D [1].

We make the following contributions: (i) We address the
problem of 3D synthesis from 2D images by combining
a Signed Distance Function (SDF) network with a Style-
GAN generative architecture. Our GeoGen model produces
more refined geometry predictions compared to conven-
tional neural volume rendering. (ii) We propose an SDF
depth map consistency loss that is designed to address geo-
metric inaccuracies from volumetric integration by aligning
3D points with the SDF network’s zero-level set for more
precise reconstructions. (iii) We introduce a new dataset of
realistic synthetic human heads that contains 360◦ camera
views from multiple synthetic humans. This dataset will be
a valuable resource for training and quantitatively evaluat-
ing 3D generative models. It can be found on our webpage
https://microsoft.github.io/GeoGen.

2. Related work
The landscape of generative modeling has seen a shift in
recent years, with techniques drawing on neural implicit
representations, such as Generative Adversarial Networks
(GANs) [14] and Diffusion models [10, 18, 24, 37] emerg-
ing as powerful tools. These techniques blend generative
models with neural volume rendering, thereby synthesiz-
ing 3D images that capture novel viewpoints from 2D data
alone [26]. However, a recurring challenge in this domain
has been the reliance on generic density functions to learn
the geometry of the images, a factor that often introduces
artifacts and results in noisy, low-quality geometric predic-

tions [31]. To mitigate this, prior work has taken advantage
of large amounts of multi-view data to constrain the models,
thereby yielding more robust geometry [39, 43], but at the
expense of not being fully generative.

The emergence of volumetric implicit representations,
bolstered by the strengths of Multi-Layer Perceptrons
(MLPs) [15] and neural rendering techniques [26], has
shown substantial promise in extracting detailed geometry
from a 3D scene. This is most apparent in methods such
as NeuS [39] and VolSDF [43], which extract high-fidelity
surfaces by representing the scene using the Signed Dis-
tance Function (SDF) and extracting the surface at the zero
level set.

Meanwhile, the broader field of deep learning has seen
a surge in novel methods for creating 3D representations
from 2D data. One such family of methods is Neural Radi-
ance Fields (NeRFs) [26], which employs a neural network
to model the radiance of a 3D scene at any spatial point. The
ability of NeRFs to generate high-fidelity 3D models from
2D multi-view supervision, complete with accurate light-
ing and shading effects, makes them an attractive option for
applications requiring realistic 3D representations, such as
virtual reality [43].

One set of methods that deserves particular discussion
within this landscape is the set of 3D-aware generative mod-
els [4, 9, 12, 13, 16, 27–29, 35]. These methods are specif-
ically designed to generate 3D representations of objects
or scenes, utilizing a variety of techniques, including vol-
umetric representations, SDFs, and implicit neural repre-
sentations. For instance, the Generative Radiance Fields
(GRAF) model [34] generates high-resolution 3D shapes
with intricate detail, leveraging a neural network to model
the radiance and shape of a 3D object. Other notable mod-
els include DeepSDF [32], which learns continuous signed
distance functions for arbitrary shapes using 3D supervi-
sion, and HoloGAN [27], which generates 3D objects by
imposing structural constraints in the generative process.
Recently, EG3D [5] proposed a triplane representation for
volume rendering in generative models, which enables effi-
cient 3D-aware generation. However, extracting high qual-
ity 3D meshes is not guaranteed because of its use of a vol-
ume density representation. StyleSDF [31], makes use of
an SDF representation to directly model geometry, but the
extracted surfaces are overly smooth making it challenging
to use them in practical applications.

In our investigation of 3D-aware generative models and
SDF representations, we identify certain limitations inher-
ent in existing methodologies. One such limitation appears
to be a result of the use of the Eikonal loss [11, 39, 43], lead-
ing to overly smooth geometry synthesis. Our methodology,
building on the foundation laid by EG3D, aims to overcome
this by introducing an SDF depth-consistency constraint.
This novel constraint is designed to refine geometric surface



Figure 1. GeoGen, our 3D-aware generator, is trained solely from 2D images. Noise sampling is followed by a StyleGan2 generator that
produces triplane features similar to EG3D [5]. However, we enhance them with positional info and an SDF network for refined geometry.
GeoGen is end-to-end trained with a GAN objective along with our SDF depth consistency loss.

predictions by leveraging a self-supervised depth prediction
mechanism. Unlike previous efforts, such as StyleSDF [31],
which merely translates SDF values into density fields, our
approach harnesses the full potential of SDF for geometry
representation as exemplified by VolSDF [43]. We empha-
size that incorporating our SDF representation and its as-
sociated constraints does not substantially complicate the
training of generative models yet provides enhanced con-
trol over geometric surface detail.

3. Method

Here we present our GeoGen generative approach for
enhanced geometric synthesis. We begin by revisiting
EG3D [5], an efficient geometry-aware 3D GAN that intro-
duces notation and provides context for our contributions.
Then we describe our SDF-based generative model which
builds on the EG3D framework.

3.1. Efficient geometry-aware 3D GAN

EG3D [5] is an efficient geometry-aware 3D generative ad-
versarial network. It consists of a StyleGAN2 [20] based
feature generator, triplane representation, implicit volume
render, and super-resolution module. In order to generate an
image, it first samples a random latent noise code and pro-
cesses the code via a mapping network. The processed code
is used to drive the StyleGAN2 generator to produce feature
maps which are reshaped to form three feature planes. Dur-
ing the volume rendering, a queried 3D point p is projected
onto each of the three feature planes, leading to correspond-
ing feature vector [Fxy(p), Fxz(p), Fyz(p)]. These feature
vectors are further processed by a shallow MLP to yield
the color and density at the position p. By the process of
volumetric integration, a low-resolution image is generated
based on the sampled points along all image rays. Finally, a
super-resolution module is used to generate high-resolution
output images.

Like EG3D, we also use a triplane representation to ef-
ficiently generate images. Different from EG3D, which tar-
gets geometry-aware image synthesis, we focus on high-
quality geometry synthesis. To this aim, we introduce
an SDF-based generative model and present a novel SDF

learning strategy.

3.2. SDF-based generative model

Our goal is to develop a model that can learn to generate
3D consistent object-centric images with associated geom-
etry by making use of a collection of posed single-view 2D
images at training time. This transformation is achieved by
conceptualizing the surface as the zero-level set of a neu-
ral implicit signed distance function. To achieve our high-
fidelity geometric synthesis, we first introduce our aug-
mented triplane representation. Then, we introduce our
SDF-based volume rendering. Finally, we describe an SDF
depth-consistency constraint, which is used to enhance SDF
learning. Figure 1 displays our overall pipeline.
Augmented triplane representation. Our method aug-
ments the original EG3D triplane representation with
sampling position p. According to the sampling po-
sition p, we retrieve the corresponding feature vector
[Fxy(p), Fxz(p), Fyz(p)] via bilinear interpolation. In ad-
dition, the position p is processed by a position embedder
PE(·) that employs multi-level sine and cosine functions
similar to NeRFs [26]:

PE(a) = [a, γ0(a), γ1(a), . . . , γL−1(a)], (1)

where γk(a) = [sin(2kπa), cos(2kπa)], L is a hyper-
parameter that controls the maximum encoded frequency,
and a represents each of the three different spatial dimen-
sions of p. p is defined as a vector since it represents the
position in 3D space. Each component of p (i.e., px, py , pz)
corresponds to a different spatial dimension.

The function γk(a) is a positional encoding function that
takes a scalar value a and returns a 2D vector representation
of the sine and cosine of 2kπa. This function is used for
positional encoding to capture frequency information up to
a maximum frequency defined by the hyper-parameter L.

The augmented triplane representation is formed by
concatenating the triplane features Fxy(p), Fxz(p), and
Fyz(p) with the positional encoding PE(px), PE(py), and
PE(pz). This augmented representation enables the model
to capture high-frequency details by combining the local ge-
ometric features with positional encoding information. The



absence of the positional encoder destabilizes the training
process, often resulting in model collapse (see supplemen-
tary material for results).
SDF-based volume rendering. The augmented tri-plane
representation is directed to a shallow MLP to learn the SDF
value s(p) and RGB color c(p) for point p. The SDF value
represents the distance to the surface, providing an accurate
depiction of its geometry. To convert the SDF value s(p)
into a density field σ, we follow VolSDF [43] and use the
following Laplace transformation:

σ(s(p)) =


1
2β exp

(
s(p)
β

)
if s(p) ≤ 0

1
β

(
1− 1

2 exp
(
− s(p)

β

))
if s(p) > 0

,

(2)
where β is a parameter, which can be fixed or learned.
Based on the volumetric integration, the rendered RGB
color for a ray r(t) = o+ td is calculated as follows:

C(r) =

M∑
i=1

Ti(1− exp(−σiδi))ci, (3)

where o is the camera position, d is the ray direction,
Ti = exp(−

∑i−1
j=1 σjδj) and δi = ti+1 − ti is the distance

between adjacent sampled points. For simplicity, we use
σi and ci to denote σ(s(pi)) and c(pi) respectively, which
mean the color and density value at the i-th sampling point
pi along ray r. In a similar way, we compute the rendered
distance as follows:

d(r) =

M∑
i=1

Ti(1− exp(−σiδi))ti. (4)

SDF depth consistency. It has been shown in Geo-
Neus [11] that there can exist a gap between the rendered
image and the true surface and it is important to introduce
explicit constraints to optimize the SDF network. There-
fore, Geo-Neus introduces sparse points and multi-view
photometric consistency to achieve this in the multi-view
setting when multiple images are available for each object
during training. However, these two constraints are obvi-
ously not available in our single-view GAN setting. To re-
duce the geometry bias caused by volumetric integration,
the 3D point computed from the rendered distance d(r) in
Equation 4 should be located on the zero-level set of the
SDF network. Thus, according to the rendered distance
d(r), its corresponding 3D point pd(r) is computed as:

pd(r) = o+ d(r)d. (5)

Since the above 3D point should be approximately on the
geometry surface, the SDF value of this point should be ap-
proximately zero. Thus, we define an SDF constraint as:

Ls =
1

|R|
∑
r∈R

|s(pd(r))|, (6)

where R denotes all rays for the current camera pose. Dur-
ing training we aim to minimize the above loss.

3.3. Training GeoGen

The SDF-based GeoGen model uses dual discrimination
during training, evaluating both the neurally rendered low-
resolution 2D image and the super-resolved 2D image. The
generative model takes only 2D images as input, and the
discriminator encourages both the low-resolution and super-
resolved synthesized 2D images to match the distribution
of real images. This ensures the consistency between the
super-resolved images and the neural rendering, facilitating
our method to achieve high-quality high-resolution render-
ing results. In addition, the SDF depth consistency loss is
imposed during training to promote geometric consistency.
The model can then effectively learn to capture accurate ge-
ometry information from the 2D images, leading to more
precise and reliable 3D reconstructions. Our overall loss is:

L = Ldis + λLs, (7)

where Ldis is a GAN loss computed using dual discrimi-
nation and λ is a weighting applied to the SDF constraint.
Empirically we find that directly training our model from
scratch is challenging. We suspect that the introduced learn-
able parameter β in Equation 2 prevents the StyleGAN2-
based feature generator from learning effective features. In
addition, the SDF constraint requires good geometry initial-
ization, which is not possible to obtain in the early phase of
training. Therefore, we design a learning strategy to train
our model in which the β parameter of the Laplace den-
sity distribution is fixed to stabilize the early learning of our
generative model.

Specifically, the significant part of this training process
involves managing the β parameter of the Laplace transfor-
mation in Equation 2, which directly influences the learn-
ing of the SDF network. The β parameter remains fixed for
the first N iterations to allow the SDF network to focus on
learning coarse geometry. This enables the learning of the
StyleGAN2-based generator to produce stable view synthe-
sis. After N iterations, we make the β a learnable parameter
to increase the ability of the model to capture finer-scale sur-
face details. As previously mentioned, the SDF constraint
should also be carefully managed. We achieve this by con-
trolling the weight λ in Equation 7, where it is initially set to
0, and then increased to 0.1 after N iterations. As a result,
our geometry optimization is conducted in a quasi coarse-
to-fine fashion, i.e. N iterations, our Geo-Gen learns coarse
geometry and then after this, the SDF constraint can con-
centrate on surface detail refinement.

4. Synthetic human head dataset
Existing methods typically train their models on high
resolution human face datasets such as Flickr-Faces-HQ



Figure 2. Examples from our synthetic human dataset. We display
rendered images on top and pseudo 3D ground-truth below.

(FFHQ) [19]. However, FFHQ only contains a limited
range of captured viewpoints (i.e. no backs of heads) and
has no 3D ground-truth, hence the need for our syn-
thetic dataset. There are other synthetic datasets, such as
ShapeNet Cars [6], which have ground-truth 3D meshes but
are not realistic looking.

To address this, we created a new dataset of semi-
realistic synthetic human heads which is generated based
on the work of Wood et al. [41]. Our dataset features im-
ages of different synthetic individuals with diverse facial
features, body morphologies, clothing, and hair styles. Cru-
cially, unlike FFHQ which primarily captures frontal views,
our dataset includes images across the full azimuth range,
ensuring comprehensive representation of heads from all
sides. This approach not only fills a critical gap in available
resources but also shifts the focus towards the quality of the
mesh, a vital aspect for advancing the field of 3D generative
modeling.

For our dataset, we randomly generate 10 images of
512×512 for each of 19,800 identities, ensuring a com-
prehensive set of different views, encompassing full az-
imuthal coverage and utilize multi-view stereo and surface
reconstruction techniques to establish pseudo ground-truth
meshes. To generate a pseudo ground-truth mesh for quan-
titative evaluation of 3D reconstruction metrics we use the
ACMP multi-view stereo approach from [42] and Poisson
surface reconstruction [22] to reconstruct the full head ge-
ometry. Example images can be found in Figure 2. A subset
of images from our synthetic dataset will be made available
upon acceptance.

5. Experiments

Here we present qualitative and quantitative results compar-
ing GeoGen to existing methods. For the baseline EG3D
model, we retrained it on each of the evaluation datasets so
that the training settings were consistent with our approach
(e.g. the same number of training epochs). Implementation
details are provided in the supplementary material.

Dataset Method FID↓ KID↓ ID↑
FFHQ GRAF 79.20 55.00 -

PiGAN 83.00 85.80 0.67
GIRAFFE 31.20 20.10 0.64
HoloGAN 90.90 75.50 -
StyleSDF 11.50 2.65 -
EG3D 4.86 0.0053 0.77
EG3D (rebalanced) 4.70 0.0044 0.79
EG3D∗∗ 5.70 0.0054 0.76
GeoGen 5.40 0.0049 0.75

Synthetic Heads EG3D∗∗ 5.90 0.65 0.69
GeoGen 5.10 0.0038 0.69

ShapeNet Cars GIRAFFE 27.30 1.70 -
Pi-GAN 17.30 0.93 -
EG3D 2.75 0.0054 -
EG3D∗∗ 2.90 0.0043 -
GeoGen 2.50 0.0028 -

Table 1. Comparative analysis of different generative models on
FFHQ, our Synthetic Heads, and ShapeNet Cars datasets using
standard 2D metrics. Our model surpasses EG3D [5] and other
leading models in both FID and ID metrics for the Synthetic Heads
and ShapeNet V1 datasets. However, it does not outperform EG3D
on the FFHQ dataset, attributed to a lower number of training it-
erations due to limited computational resources. Additionally, the
original number of training epochs for achieving the reported FID
results in EG3D is not specified by its authors. GeoGen was not
included in training on the FFHQ rebalanced dataset due to its un-
availability during the training period. ∗∗ indicates our retraining
with far fewer iterations and computation power.

5.1. Datasets

We perform experiments on Flickr-Faces-HQ (FFHQ) [19],
ShapeNet Cars [6], and our synthetic human dataset de-
scribed previously. Each provide distinct, valuable re-
sources for training and evaluating 3D-aware generative
models. The FFHQ dataset consists of high-quality real 2D
face images. It contains over 70,000 1024×1024 resolution
images. ShapeNet Cars provides images for a variety of car
models imaged from different viewpoints. The dataset we
used for training contains 2,100 different car instances, each
with 20 images from different viewpoints.

5.2. Quantitative results

We adopt the widely used Frechet Inception Distance
(FID) [17] and Kernel Inception Distance (KID) [2] met-
rics to measure the image synthesis quality of our GeoGen
approach. We also assess multi-view facial identity con-
sistency (ID) by calculating the mean Arcface [8] cosine
similarity score between pairs of views of the same synthe-
sized face rendered from random camera poses. We report
the results of our retrained EG3D baseline using the same
training conditions and our GeoGen model on the three dif-
ferent datasets in Table 1. Our improved results show that
our GeoGen can achieve better image synthesis results on
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Figure 3. Sampled images and meshes from EG3D, Style SDF, and our GeoGen approach on FFHQ. GeoGen meshes display smoothness,
anatomical accuracy, and detailed facial features. In contrast to EG3D and Style SDF, GeoGen synthesizes finer geometric detail.
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Figure 4. Sampled images and meshes from EG3D, StyleSDF, and our GeoGen approach trained on our synthetic human head dataset.
GeoGen results in fewer overt visual artefacts and more faithfully captures the backs of objects (e.g. see second last column). While the
2D images from the competing methods look plausible, the underlying 3D mesh is not always consistent.

synthetic humans and ShapeNet Cars datasets.

An important feature of our approach is its ability to gen-
erate accurate meshes from a single image. However, it
is difficult to evaluate the geometric quality of generative
models on real images as ground-truth 3D shape informa-
tion is challenging to obtain. Instead, it is possible to obtain
the ground-truth meshes for both synthetic datasets that we
use. To evaluate the generated meshes of different methods
quantitatively, we leverage the GAN inversion technique
PTI [33]. Then, given an image from the test set dataset,
we can estimate the corresponding latent code by PTI. With
the latent code, we can generate both the synthesized im-
age and mesh. In this way, we can compute a range of 3D
evaluation metrics that compare the differences between the
synthesized mesh and ground-truth mesh to measure the ge-
ometry fidelity. Results are presented in Table 2, where we
observe that our GeoGen outperforms EG3D.

5.3. Qualitative results

Here we present qualitative results where we compare Ge-
oGen to existing methods. In Figures 5 and 7 we compare
2D image synthesis of different methods via GAN inver-
sion. We observe that GeoGen results in outputs that more
closely match the input image. In Figure 7 we observe that
GeoGen captures details such as the spacing between the
car body and wheel and, in some instances, even the han-
dles on the doors of the cars. Finally, in Figures 3 and 4 we
display sampled outputs (i.e. not inversions).

6. Discussion
Our evaluation shows the competitive performance of our
proposed GeoGen model, both qualitatively and quantita-
tively. To gain deeper insight into the effectiveness of our
approach, we employed a suite of metrics that assess both
the 2D and 3D aspects of the images and meshes gener-
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Figure 5. Inversion Results for EG3D and GeoGen Models: The figure presents a comparison at 0◦, 90◦, and 270◦ angles to highlight
variations in the reconstruction of facial features by the two models.
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Figure 6. Comparison of EG3D and GeoGen, with and without SDF Depth Loss (SDF DL) constraints, showing sampled images from
models trained on our synthetic human images. These examples highlight GeoGen’s ability to represent finer geometric details, e.g. the ears
have more detail than those generated by EG3D. We also observe a failure for EG3D in the top right, where the back of the head contains
facial geometry. More qualitative results highlighting the differences in the use of the SDF depth loss are shown in the supplementary.

ated by our model. Two quantitative performance areas are
of particular note: the synthesis of high-quality 2D images
and precise 3D geometric predictions. Our model competes
closely with EG3D [26] in terms of 2D metrics, outperform-
ing both StyleSDF [32] and GRAF [34]. This demonstrates
our model’s ability to generate high-fidelity 2D images.

Table 2 showcases a systematic comparison between Ge-
oGen and EG3D, revealing the advantages of incorporat-
ing Signed Distance Functions (SDF) and SDF depth con-
straints during training. The lower Chamfer Distance for
GeoGen compared to EG3D for both Cars and synthetic

human heads is indicative of a more precise alignment be-
tween the reconstructed points and corresponding points in
the ground-truth. This highlights an improved precision in
point-to-point correspondence which is an essential part of
3D reconstruction. The Earth Mover’s Distance, another vi-
tal metric in understanding the geometrical congruence be-
tween shapes, is also consistently lower for GeoGen. This
indicates that the shapes are more similar, requiring fewer
alterations to match the ground-truth, thus showing an un-
derlying efficiency in GeoGen’s modeling approach. Fi-
nally, the Mean Surface Distance adds to the evidence of



Source Image EG3D GeoGen w/o SDF-DL GeoGen w/ SDF-DL

Figure 7. Comparison of mesh predictions on ShapeNet Cars. Meshes are obtained by inverting the source image to derive latent codes.
EG3D meshes display diminished shape fidelity and surface detail. Using SDF constraints in GeoGen improves detail, evident around car
wheels and windows. Results for GeoGen without SDF constraints are also shown for context.

ShapeNet Cars
Method Chamfer↓ MSE↓ HD↓ EMD↓ MSD↓
EG3D 0.31 0.31 0.85 0.44 0.33
GeoGen w/o SDF&Depth Loss 0.27 0.28 0.77 0.42 0.31
GeoGen 0.25 0.27 0.77 0.40 0.29

Synthetic Heads
Method Chamfer↓ MSE↓ HD↓ EMD↓ MSD↓
EG3D 0.21 0.29 0.65 0.54 0.35
GeoGen w/o SDF& Depth Loss 0.19 0.29 0.59 0.45 0.26
GeoGen 0.17 0.27 0.56 0.43 0.24

Table 2. Comparison of different 3D reconstruction metrics for
generative models on ShapeNet Cars and our Synthetic Heads
dataset. We report averages for MSE, HD, and MSD metrics. Vari-
ations of GeoGen without the SDF and Depth Loss constraints are
also shown. Best methods for each dataset are bolded.

GeoGen’s superiority, as it also yields consistently lower
values. The implication here is a closer similarity between
the reconstructed and target shapes, providing further evi-
dence for GeoGen’s effectiveness.

The utilization of the SDF in GeoGen ensures better ge-
ometric consistency in the reconstruction, as it leverages the
implicit representation of the mesh’s surface. GeoGen, with
its additional depth constraints, preserves topology and fine
details that are often overlooked with conventional genera-
tive techniques like EG3D (see Figure 6). It is also note-
worthy that these numerical advantages, though significant,
do not fully represent the perceptual quality of the recon-
structed models. Qualitative evaluations indicate that mod-
els generated by GeoGen often appear more realistic and ac-
curate, underscoring GeoGen’s advantage in bridging quan-

titative performance with perceptual realism.

Limitations. Our GAN-based approach, like others, re-
quires posed images for training. Camera poses can be es-
timated similar to methods used in FFHQ. While we aim to
align the expected depth with the SDF’s zero-level set, ex-
tending the SDF consistency loss to other points along the
ray could theoretically enhance geometric accuracy. How-
ever, this would substantially increase computational load.
There are also inherent limitations in learning-based meth-
ods, such as potential bias from unrepresentative training
data, notably in web-scraped human face images.

7. Conclusion
We presented GeoGen, a novel 3D-aware generative model
for synthesizing high-quality 2D images with associated ac-
curate 3D geometry, that is trained from 2D images. Ge-
oGen outperforms established methods on several perfor-
mance metrics. By harnessing the power of neural implicit
representations and neural signed distance functions, we
have developed a solution that delivers both quality and ver-
satility in the context of 3D representation learning. In addi-
tion, we presented a new synthetic human head dataset for
training and quantitatively evaluating 3D generative mod-
els. GeoGen moves us closer to the goal of enriching fields
such as character animation, gaming, and virtual reality
with plausible 3D geometry from single input images. Our
results affirm the potential of our approach and its relevance
in this rapidly evolving field.
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[41] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian
Dziadzio, Thomas J Cashman, and Jamie Shotton. Fake it
till you make it: face analysis in the wild using synthetic
data alone. In International Conference on Computer Vision,
2021. 5

[42] Qingshan Xu and Wenbing Tao. Planar prior assisted patch-
match multi-view stereo. In AAAI Conference on Artificial
Intelligence, 2020. 5, 11, 13

[43] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. Advances in Neu-
ral Information Processing Systems, 2021. 1, 2, 3, 4



Appendix
The foundation of our model relies on the official imple-

mentation of Enhanced Generative 3D Models (EG3D) [3].
We utilized R1 regularization, assigning a gamma = 1 for
the synthetic humans and FFHQ dataset based on the input
image size of 512 x 512 and batch size of 32 across 8 v100
GPUs, following the same hyperparameter tuning of EG3D.
For ShapeNet Cars, we adopted a gamma value of 0.3 based
on the 128 x 128 resolution and batch size of 32 [11]. Our
model employs the same architecture as StyleGAN2 [31],
composed of a mapping network with 8 hidden layers, and
output convolutions yielding 96 feature maps. Following
the EG3D protocol, these are then reshaped into 3 planes of
256 x 256 x 32 [3].

.1. GeoGen training

During the initial training of GeoGen for the FFHQ and
Synthetics dataset, the model was trained end-to-end, a pro-
cess that necessitated unique handling of the SDF depth
consistency loss. For the first 10,000 epochs, we set the
beta value for the Laplace density distribution to 0.1 and re-
frained from making it learnable, as our end-to-end model
would not have been able to learn the best beta value at
this stage [11]. This approach allowed the model to first
learn the optimal geometry and SDF depth map. In con-
trast, StyleSDF had to introduce a two-stage training pro-
cess precisely because their pipeline was not trained end-
to-end. They consistently used a learnable beta parameter
for the Laplace density distribution throughout their train-
ing, as their method required more flexibility in the control
of the SDF consistency loss.

The Laplace beta value plays a crucial role in the SDF
network as it controls the shape of the Laplace distribution,
influencing how the model penalizes deviations from the ex-
pected SDF values. A lower beta value produces a wider
distribution, allowing for a larger spread of SDF values, and
a higher beta value tightens the distribution, constraining
the SDF values more strictly. This ability to control the dis-
tribution of SDF values enables fine-tuning of the model’s
sensitivity to inconsistencies in the SDF depth, a key aspect
of the learning process. After the generator in our model
showed improvement in rendering, depth maps, and under-
lying geometry, we activated the SDF constraint for depth
map regularization and introduced the learnable beta param-
eter for the remaining 10,000 epochs. This allowed us to
dynamically adapt the SDF consistency loss and fine-tune
the model’s learning of SDF depth.

Both EG3D and GeoGen models underwent training for
20,000 epochs for the FFHQ and Synthetics data, while for
the ShapeNet dataset, training was conducted for 10,000
epochs. The batch size for all models was 18, with the
discriminator’s learning rate at 0.002 and the generator’s
at 0.0025. The training was carried out using 4 NVIDIA

P100, while an RTX 2080 and RTX 4090 were used for in-
ference during inversions and sample generation. Our end-
to-end training approach, including the specific handling of
the Laplace beta value, was central to our method’s effec-
tiveness in learning SDF depth. It allowed us to combine
the flexibility needed in the early stages of learning with the
precision required in later stages, reflecting a sophisticated
understanding of the role that SDF plays in the generative
process.

.2. SDF and color network and surface rendering

The resulting embedding from the augmented spatial rep-
resentation is fed into the SDF (Signed Distance Function)
network. This network utilizes the embedded position to
query the SDF value at a specific point, which gives pre-
cise information regarding the distance to the nearest sur-
face within the 3D space. The understanding of these dis-
tances is crucial in the reconstruction of 3D objects, as it
provides detailed insights into the geometry and the under-
lying complexities of the data being modeled.

Once the SDF network receives and processes the em-
bedded position, the computed SDF values are further han-
dled by the color network. This auxiliary network takes
the SDF values and translates them into the corresponding
color values for the rendered 3D object. The direct utiliza-
tion of SDF values as input for the color network estab-
lishes a coherent link between the geometric structure and
visual appearance of the object. Both the SDF and color
networks are built with a single hidden layer comprising
64 hidden units and leverage a soft plus activation function.
This structure ensures smooth transitions and optimal gradi-
ent flow within the networks. For the transformation of the
SDF into tangible density, a specific surface rendering tech-
nique has been applied. The sampling strategy is carefully
chosen and tailored to different datasets, such as using 48
uniformly spaced samples and 48 importance samples per
ray for the FFHQ dataset, and 64 of each for ShapeNet cars
and Synthetics data.

In combination, these elements forge an intricate
pipeline that integrates spatial features and coordinates,
through a positional encoder, with the SDF and color
networks. The methodology’s architecture ensures a nu-
anced and true-to-life representation across a multitude of
datasets. The implementation of a positional encoder has
further enhanced the SDF network’s capacity to grasp and
replicate complex 3D geometries. The employment of SDF
networks for surface rendering has led to a more sophisti-
cated and resilient interpretation of various datasets.

.3. Reconstruction of pseudo ground truth meshes

To reconstruct pseudo ground truth meshes we use Planar
Prior Assisted PatchMatch Multi-View Stereo (ACMP) [42]
and Poisson surface reconstruction [23]. Example pseudo
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Figure A1. A detailed comparison between EG3D and GeoGen in the context of ShapeNet cars inversion of meshes, emphasizing the
differences in the geometric representation and rendering capabilities of both methods. The samples underscore the advanced efficacy
of GeoGen in capturing and reconstructing intricate geometric details within the car models, even at granular levels. This superiority is
attributed to the integration of the Signed Distance Function (SDF) network along with the SDF depth consistency loss within GeoGen’s
architecture. The SDF approach provides a continuous and differentiable representation of the car’s surface, enabling more precise and
robust alignment with the observed data. This contributes to better capturing of fine geometrical nuances and results in more accurate
reconstructions. Conversely, the EG3D [3] method’s rendered meshes reveal a deficiency in portraying granular details, leading to a more
approximate and less nuanced depiction of the vehicles.

ground truth meshes are shown in Figure A5. Recogniz-
ing the challenge of depth estimation in low-textured ar-
eas, which typically exhibit strong planarity, ACMP makes
use of planar models in conjunction with the PatchMatch

algorithm. By embedding planar models into PatchMatch
MVS via a probabilistic graphical model, our approach in-
troduces a multi-view aggregated matching cost. This novel
cost function takes both photometric consistency and pla-
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Figure A2. This caption accompanies a series of synthetic images generated by the GeoGen model operating without a positional encoder.
The figures on the left illustrate the model’s output at different yaw angles, showcasing its ability to render facial features from various
perspectives. On the right, the corresponding mesh structures are displayed, providing a deeper insight into the model’s geometric rendering
capabilities. These results were captured prior to the point of model collapse, highlighting the model’s performance and limitations in the
absence of positional encoding. This comparison not only demonstrates the visual output of the model but also underscores the critical role
of positional encoding in maintaining structural integrity and realism in the generated images and meshes.

nar compatibility into consideration [42], thus accommo-
dating both non-planar and planar regions. This method has
demonstrated its capability to recover depth information in
areas of extremely low texture, efficiently leading to high
completeness in 3D models.

The problem of surface reconstruction from oriented
points is cast as a spatial Poisson problem using Poisson
surface reconstruction. This formulation’s advantage is its
simultaneous consideration of all points without the need
for heuristic spatial partitioning or blending, which en-
hances resilience to data noise [23]. The use of a hierarchy
of locally supported basis functions and the reduction of the
solution to a well-conditioned sparse linear system makes
this approach computationally efficient.

By seamlessly integrating ACMP with Poisson surface
reconstruction, we’ve crafted a novel method for 3D model
reconstruction. The fusion of these techniques allows us
to address the complexities and subtleties of 3D model-
ing, particularly in challenging scenarios where noise and
low texture might otherwise impede reconstruction. The re-
constructed pseudo-ground truth meshes generated by this
combined approach are a testament to its effectiveness, sig-
nifying an exciting advancement in the realm of 3D mod-
eling and a promising avenue for further exploration and
optimization.

.4. Results without positional encoder

Here we explore causes behind the collapse of the GeoGen
model, specifically when trained without the aid of posi-
tional encoding in the context of Neural Radiance Fields
(NeRF) and GAN training. The absence of positional en-
coding can lead to several critical issues (see Figure A2).
Firstly, in GAN training, the phenomenon of mode col-
lapse becomes more pronounced. This is where the gen-
erator starts producing a limited variety of outputs, failing
to capture the complex data distribution. Secondly, the in-

trinsic characteristics of NeRF, which rely heavily on pre-
cise spatial information to render 3D scenes accurately, are
compromised without positional encoding. This results in
the model’s inability to effectively learn and represent high-
frequency details, leading to a loss of detail and realism
in the generated images. Lastly, positional encoding plays
a vital role in stabilizing the training process by provid-
ing a more detailed and nuanced understanding of spatial
relationships in the data. Its absence can result in unsta-
ble training dynamics, ultimately causing the model to col-
lapse, particularly evident in our observations post epoch
11000. This highlights the essential nature of positional en-
coding in maintaining the stability and efficacy of models
like GeoGen, especially in complex applications involving
synthetic human images and 3D rendering.

A. Datasets

A.1. FFHQ and rebalanced FFHQ

Our modeling framework originally utilized the ”in-the-
wild” version of the FFHQ dataset, a comprehensive col-
lection of uncropped, original PNG human images sourced
from Flickr, as documented by Karras et al. (2019) [19]. To
adapt these images for our purposes, we employed a sophis-
ticated face detection and pose-extraction system [3], allow-
ing us to determine the face area and label each image with
its corresponding pose. The images were then cropped to
approximate the dimensions of the original FFHQ dataset.
We assumed fixed camera intrinsics for all images, with a
focal length 4.26 times the image width, mimicking a stan-
dard portrait lens [3]. After removing a small number of
images where face detection proved unsuccessful, our final
dataset comprised 69,957 images.

In our reporting, we include the 2D performance metrics
of models trained on the Rebalanced FFHQ dataset, particu-
larly focusing on the outcomes from NVIDIA-trained mod-
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Figure A3. Comparison of EG3D and GeoGen inversion results using held-out images from the ShapeNet Car test set. GeoGen results
more closely resemble the input ground truth image (GT).

els. The Rebalanced FFHQ dataset, known for its broader
diversity in facial orientations, plays a crucial role in en-
hancing the model’s capability to understand and replicate
human facial features from various angles. This dataset is
especially valuable for models that need to handle a wide
range of facial geometries, such as those used in advanced
image generation and recognition tasks.

While we present these metrics to showcase the perfor-
mance improvements facilitated by the Rebalanced FFHQ
dataset, it’s important to note a limitation in the available
data. NVIDIA, the entity responsible for training these
models, has not provided detailed information regarding the
number of epochs, specific training methodologies, or other
intricate details of the training process. This lack of de-
tailed training information could potentially impact the re-
producibility and further optimization of these models.

Understanding the training duration (measured in
epochs) and the specific methodologies employed is cru-
cial for comprehensively evaluating a model’s performance
and for making informed comparisons with other models.
The absence of this information leaves a gap in fully under-
standing how the Rebalanced FFHQ dataset impacts model
performance compared to the original FFHQ dataset. De-
spite this, the reported 2D metrics still offer valuable in-
sights into the enhanced capabilities of models trained on
the Rebalanced FFHQ dataset, highlighting their improved
proficiency in handling diverse facial features and orienta-
tions.

A.2. ShapeNet V1

We utilized the ShapeNet V1 Cars dataset for additional val-
idation, rigorously comparing methodologies on a specific
subset that includes 128 renderings of synthetic cars [6].
This carefully curated dataset offers a robust platform for
assessing performance across various viewing angles, en-
abling a comprehensive evaluation of 3D reconstruction and
rendering techniques.

The ShapeNet dataset, as employed in our setup, builds
on prior research and consists of 2,100 car images captured
from 50 different perspectives [6]. The multi-angle images
provide an ideal scenario to analyze geometric consistency,
shadow rendering, and surface texturing. Similar to the
preprocessing applied to the FFHQ dataset, our approach
to the ShapeNet data followed established protocols, main-
taining the integrity and original characteristics of the im-
ages. Unlike other methodologies that might use augmen-
tation or mirror images, we consciously chose not to apply
these techniques to preserve the authenticity of the data and
ensure a more accurate assessment of the models’ perfor-
mance [6].

A.3. Synthetic humans

Our training model also harnessed our proprietary syn-
thetic human dataset. This extensive collection encom-
passes 200,000 images, representing 20,000 unique iden-
tities. Each of these identities is portrayed from only 10
viewpoints, a stark contrast to the Rodin model where each



identity was rendered from 300 diverse viewpoints [40].
Despite the significant reduction in viewpoints per identity
in our dataset, our model produces high quality outputs in
terms of geometry and rendering [1]. Our training approach
proves that strong performance can be achieved with a more
limited number of viewpoints.

A.4. Pivotal tuning inversion

In the context of our work with Pivotal Tuning Inversion
(PTI), a specialized process to invert generative models like
StyleGAN, we adopt a meticulous procedure to enhance the
accuracy and efficiency of the inversion.

Initially, we utilize an off-the-shelf face detection solu-
tion to accurately locate and extract face regions within the
test images. This process allows for precise alignment and
ensures that the features of interest are adequately centered
and scaled. The extracted regions are then cropped and re-
sized to a consistent resolution of 512x512 pixels, facili-
tating uniform processing and analysis across different im-
ages.

Following this preprocessing stage, we implement the
PTI methodology as delineated by Tov et al. [38]. This
approach consists of two main stages:
1. Fine-tuning of generator weights. Subsequent to the

initial latent code optimization, we proceed with an addi-
tional 500 iterations dedicated to fine-tuning the genera-
tor’s weights. This phase is pivotal in refining the subtle
details and enhancing the realism of the generated im-
ages. By adjusting the generator’s parameters, we align
the synthetic outputs more closely with the underlying
distribution of the real data, improving both the fidelity
and the perceptual quality of the inversions.

2. Latent code optimization. For the first 500 iterations,
we focus on the optimization of the latent code, a com-
pact representation within the model’s latent space that
encodes the essential features of the target image. Uti-
lizing gradient-based optimization techniques, we iter-
atively refine the latent code to minimize the discrep-
ancy between the generated image and the target. This
stage ensures that the inverted model captures the essen-
tial characteristics of the face.
The combination of these two stages offers a robust and

precise inversion process, enabling us to generate high-
quality, detailed images that faithfully represent the origi-
nal inputs. The PTI methodology, by explicitly separating
the optimization of the latent code and the fine-tuning of
the generator, provides a nuanced control over the inversion
process, yielding superior results in terms of both accuracy
and visual appeal.

A.5. Justifying the limitations in GAN inversion

In the field of Generative Adversarial Networks (GANs),
particularly with advanced models like EG3D, the accu-

racy of GAN inversion can be inconsistent. This incon-
sistency can be attributed to several factors, encompassing
both the inherent characteristics of the generative model and
the methodologies used in the inversion process.

Firstly, the architecture and complexity of the GAN
model play a crucial role. A model with limitations in its
design may not capture a broad range of features effec-
tively, leading to challenges in accurately reproducing cer-
tain types of images during inversion. For example, if the
model’s architecture does not account for a wide variety of
facial orientations, it may struggle with accurately inverting
images that fall outside of its trained norm.

Additionally, the scope and diversity of the training data
are critical. A model trained on a dataset with limited vari-
ety, such as one primarily consisting of front-facing images,
may not perform well in inverting images with diverse or
unusual orientations. The quality and diversity of the train-
ing data directly influence the model’s ability to handle a
wide range of inversion tasks.

Furthermore, the model’s resolution and detail capa-
bilities are also significant. Models that generate lower-
resolution images or lack fine detail might fail to accurately
capture nuances in the inversion process, resulting in less
precise or realistic inversions.

On the side of inversion methodologies, the efficiency
of the algorithm and its approach to navigating and ma-
nipulating the latent space of the GAN are key factors.
The choice of loss functions and regularization techniques
within the inversion method can greatly affect the match
quality between the inverted image and the original. Com-
putational constraints can also limit the effectiveness of
more resource-intensive, yet potentially more accurate, in-
version methods.

In summary, the limitations in GAN inversion accuracy
can be attributed to a complex interplay of factors related
to both the generative model’s characteristics and the inver-
sion techniques used. Understanding and addressing these
factors is crucial for improving the accuracy and reliability
of GAN inversions.

A.6. Evaluation metrics

Evaluating the quality and performance of generated images
is paramount in understanding the effectiveness of genera-
tive models. To this end, we employed the Fréchet Inception
Distance (FID) and Kernel Inception Distance (KID), cal-
culating these metrics for 50,000 generated images against
all training images for both FFHQ and synthetic humans
datasets. The calculations were performed using the imple-
mentation provided in the StyleGAN2 codebase [19], en-
suring consistency with commonly accepted standards.

Our GeoGen model’s KID scores were found to be 100
times lower than those of comparative models, an unex-
pected result that warrants careful consideration. One pos-
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Figure A4. Comparison of models without (left) and with (right) our GeoGen SDF constraint.

sible hypothesis for this abnormality might be an alignment
of specific features or particularities in the convergence be-
havior during the training of our model. It could also be
related to the choice of hyperparameters or the data prepro-
cessing steps that were unique to our experiment. However,
these hypotheses are subject to further investigation, and the
exact reason behind the unusually low KID score remains
an intriguing question for future research.

Alongside the 2D image quality evaluation, we also as-
sessed 3D geometry comparisons, adopting the Efficient
Geometry Aware 3D Network (EG3D) [3] for evaluation.
Our GeoGen model showed promising results relative to
the EG3D model, as indicated by these metrics, both in
terms of 2D image quality and 3D Chamfer distance met-
rics. The overall evaluation paints a comprehensive picture
of our model’s capabilities, but the abnormally low KID
score serves as a reminder that there may always be under-
lying complexities and subtleties that require further explo-
ration and understanding.

A.7. 3D reconstruction metrics

The assessment of 3D geometry is a critical aspect of our
evaluation, as it reflects the ability of the generative models
to faithfully reconstruct and represent the intricate geomet-
ric details of the subjects. Table 2 from the paper presents
a comprehensive comparison of different 3D reconstruction
metrics for generative models on ShapeNet Cars and Syn-
thetic Human Heads. The selected metrics include Overall
Chamfer Distance, Mean Squared Error (MSE), Hausdorff
Distance (HD), Earth Mover’s Distance, and Mean Surface
Distance (MSD).

These metrics were chosen for their ability to capture
various aspects of geometric fidelity. Chamfer Distance
provides a measure of dissimilarity between two point sets,
emphasizing both the precision and recall of the recon-
structed surfaces. MSE offers insights into the mean dif-
ferences between corresponding points, focusing on local

accuracy. HD measures the maximum distance from a point
in one set to the nearest point in the other set, highlighting
global discrepancies. Earth Mover’s Distance quantifies the
minimum amount of work to transform one point set into
the other, capturing overall distribution alignment. Lastly,
MSD focuses on the mean distance between surfaces, re-
flecting surface smoothness and consistency.

In the process of evaluating these metrics, we scaled
the generated and ground-truth meshes to fit within a unit
sphere to ensure a consistent basis for comparison. We then
randomly sampled 20,000 points from the meshes, repeat-
ing this process 20 times, in order to compute the mean
and standard deviation of the metrics. This methodology al-
lowed us to capture a comprehensive and statistically robust
representation of the geometric quality, eliminating poten-
tial biases related to specific sampling patterns or scaling
discrepancies.

The results, as shown in Table 2 of the main paper in-
dicate that GeoGen demonstrates superior results, reflect-
ing its ability to represent finer geometric details. The ta-
ble also includes comparisons with GeoGen without SDF
and DL constraints, allowing for an understanding of how
specific components and constraints influence model per-
formance. The best-performing methods for each dataset
are highlighted in bold, striking a balance between quan-
titative performance and perceptual realism. The rigorous
evaluation of these 3D metrics underscores the effectiveness
of our approach and contributes to a nuanced understanding
of generative modeling for complex geometric structures.

B. Additional qualitative results

In Figure A5 we present a comparison of synthetic human
avatar meshes across EG3D [3] and GeoGen. It is quali-
tatively evident that our model, leveraging the capabilities
of the Signed Distance Function (SDF) network with SDF
depth consistency loss, surpasses both EG3D and StyleSDF
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Figure A5. Qualitative inversion results on our synthetic face dataset, focusing on the comparison between the EG3D [3] and GeoGen
inversion methods. The corresponding latent source for the source held-out test input image is estimated for GeoGen using GAN inversion,
revealing its ability to capture fine details with reduced noise and artifacts. In contrast, the EG3D [3] inversion meshes are observed to
have significant artifacts, particularly around the ears, and display noticeable holes in the top regions of the eyes. Our inversion mesh
is meticulously compared against pseudo ground truth, and reconstructed using Poisson surface reconstruction from multi-view images,
underscoring the superiority of the GeoGen method in terms of fidelity and accuracy. Moreover, our inversion technique exhibits increased
precision, contributing to a more authentic representation of the facial structure.

(as shown in the main paper) in reconstructing detailed fa-
cial features, including the ears, nose, hair, and eyes.

Additionally, we demonstrate the ability of the GeoGen
model in 3D reconstruction on the ShapeNet cars dataset in
Figures A4 and Figure A1 where it successfully reproduces
granular details on the surface of the cars. We also show in-
version results in Figure A3. This distinction is further high-
lighted by contrasting the rendering qualities of the gener-
ated synthetic samples from the EG3D and GeoGen models,

displayed in Figure 5, against some ground truth samples.
Unlike the EG3D model [3], which exhibits a lack of granu-
lar details, our model’s implementation of a more advanced
SDF network, combined with robust SDF constraints and
feature storage within a triplane, yields more precise and re-
fined reconstructions. Thus, our approach consistently and
effectively bridges the gap between visual perception and
geometric representation, outperforming other techniques
in 3D reconstruction fidelity. That is also visible in Fig-



ures A4 and A1 where GeoGen is able to better reconstruct
the surface of synthetic faces using a GAN inversion tech-
nique [3].
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