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Fig. 1: ROOM framework overview. Given patient CT scans (left), our pipeline reconstructs accurate 3D lung models and extracts medial axis trajectories,
enabling physics-based continuum robot simulation to generate photorealistic multi-modal sensor data (right). This includes RGB images with realistic
noise and lighting, metric depth maps, surface normals, optical flow, point clouds, and ground-truth poses, for different medical robotics applications.

Abstract— Continuum robots are advancing bronchoscopy
procedures by accessing complex lung airways and enabling
targeted interventions. However, their development is limited
by the lack of realistic training and test environments: Real
data is difficult to collect due to ethical constraints and patient
safety concerns, and developing autonomy algorithms requires
realistic imaging and physical feedback. We present ROOM
(Realistic Optical Observation in Medicine), a comprehensive
simulation framework designed for generating photorealistic
bronchoscopy training data. By leveraging patient CT scans,
our pipeline renders multi-modal sensor data including RGB
images with realistic noise and light specularities, metric
depth maps, surface normals, optical flow and point clouds
at medically relevant scales. We validate the data generated by
ROOM in two canonical tasks for medical robotics—multi-view
pose estimation and monocular depth estimation, demonstrating
diverse challenges that state-of-the-art methods must overcome
to transfer to these medical settings. Furthermore, we show
that the data produced by ROOM can be used to fine-tune
existing depth estimation models to overcome these challenges,
also enabling other downstream applications such as navigation.
We expect that ROOM will enable large-scale data generation
across diverse patient anatomies and procedural scenarios that
are challenging to capture in clinical settings. Code and data:
https://iamsalvatore.io/room/.

I. INTRODUCTION

Continuum robots have emerged as an innovative tech-

nology in minimally invasive surgery, with bronchoscopy
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representing one of the most promising applications. These

flexible, cable-driven systems can navigate the intricate

branching networks of human airways with unprecedented

dexterity, enabling precise drug delivery, tissue sampling, and

diagnostic imaging in lung regions previously inaccessible

to rigid instruments [1]. Continuum robots can enable early

intervention in peripheral lung nodules, targeted chemother-

apy delivery, and real-time biopsy guidance, significantly

improving patient outcomes in pulmonary medicine.

Nevertheless, the development of autonomous navigation

algorithms for continuum robot bronchoscopy faces data-

related limitations. Clinical data collection is inherently

constrained by patient safety protocols, ethical review pro-

cesses, and the high costs associated with experimental

procedures. More fundamentally, the individualised nature

of human anatomy means that effective algorithms must

generalise across diverse airway geometries while maintain-

ing millimetre-level precision [1]. Synthetic data generation

has demonstrated remarkable success in addressing similar

challenges across robotics applications from autonomous

driving to visual SLAM [2], [3]. In the medical context,

some recent efforts have focused on data generation for

colonoscopy, as done by the SimCol3D Challenge [4], or

on simulation frameworks for surgical procedures [5]. How-

ever, bronchoscopy procedures require anatomical fidelity,

procedure-specific lighting conditions, as well as specific

kinematics and sensor modalities calibrated to clinical scales.

In this paper, we introduce ROOM (Realistic Optical Ob-

servation in Medicine), a simulation framework engineered

for continuum robot bronchoscopy applications. ROOM

https://iamsalvatore.io/room/


Fig. 2: ROOM data generation pipeline. The system consists of four main stages: (1) Medial Axis Extraction from segmented CT lung models, (2)
Automated Sampling along skeletal branches with higher density at bifurcations and high-curvature regions, (3) Data Synthesis generating synchronized
multi-modal sensor streams from t0 to tn timesteps, and (4) Sensor Noise Modeling applying realistic noise characteristics matching real bronchoscopy
imagery through frequency-domain analysis.

provides the first fully automated pipeline that transforms

patient CT scan data into extensive synthetic training datasets

while preserving the geometric constraints and visual char-

acteristics essential for medical navigation tasks inside the

vessels and airways of the anatomical structures. Our system

generates photorealistic multi-modal sensor data, including

RGB imagery with realistic noise, metric depth maps, surface

normals, point clouds, and optical flow, all calibrated to

the millimetre scales typical of bronchoscopy procedures,

as shown in Fig. 2. By enabling large-scale data generation

across diverse patient anatomies and challenging procedural

scenarios, ROOM can facilitate the development of robot

bronchoscopy without the constraints of clinical data collec-

tion. The primary contributions of this work are:

• ROOM, a realistic simulation framework designed for

continuum robot bronchoscopy to generate synthetic data

at medically-relevant scales.

• A photorealistic rendering pipeline that considers endo-

scopic lighting conditions, tissue surface properties, and

data-driven sensor models.

• Validation of the synthetic data produced by ROOM in

medically-relevant tasks, such as multi-view pose estima-

tion and monocular depth estimation.

• Demonstration of additional applications such as monoc-

ular depth fine-tuning and visual navigation.

• Open-source release of the ROOM framework for benefit

of the community at https://iamsalvatore.io/

room/.

II. RELATED WORK

Medical Robotics Simulators. The medical robotics com-

munity has developed specialised platforms primarily fo-

cused on surgical training and haptic feedback [6], [5],

[7]. Traditional surgical simulators emphasize real-time in-

teraction for human operators, providing simplified visual

rendering that lacks the photorealistic quality necessary for

training sim-to-real computer vision systems [8], [9].

Recent advances in neural rendering and GPU-accelerated

training have enabled platforms such as ORBIT-Surgical [5]

to achieve fast real-time rendering for medical surgery sim-

ulation and endoscopy simulation [10], [11]. However, these

systems are not focused on large-scale dataset generation,

not providing multi-modal sensor data (depth, optical flow,

surface normals) required for navigation and depth estimation

tasks as we focus in this work.

Colonoscopy has been an important area of research for

medical robots, where data has been a priority. Challenges

such as SimCol3D [4] targeted the development of 3D recon-

struction systems. For this, SimCol3D introduced a synthetic

data generation pipeline for endoscopic procedures using

Unity’s rendering pipeline, and focused on tasks such as

pose estimation and monocular depth estimation. However,

in contrast to colonoscopy where the environment is texture-

and geometry-rich, bronchoscopy data present additional

challenges in terms of appearance and geometric degenera-

cies. These requires to use advanced rendering techniques,

such as path tracing and BSDF shaders, which ROOM

integrates within its data generation pipeline.

Continuum Robot Bronchoscopy Systems. Continuum

robots have demonstrated significant potential in bron-

choscopy applications, with recent clinical studies highlight-

ing improved diagnostic accuracy through flexible navigation

of complex airway geometries [1], [12].

The main efforts have focused on the odometry and

localisation challenges inside the airways. Given a prior map

of a lung, PANS [13] demonstrated 6 DOF pose tracking

without external sensors through Monte-Carlo based local-

isation. Conversely, Deng et al. [14] focused on map-free

situations by introducing an ex-vivo dataset for the evaluation

of monocular visual odometry systems. While we do not

focus on these specific tasks, we show how data generated by

ROOM can be used in multi-view pose estimation problems.

The ultimate goal of continuum bronchoscopy robots is to

enable localised procedures through autonomous (or semi-

autonomous) operation. For this purpose, they must be able

to safely navigate through the airways. Prior approaches

have focused on acquiring reference navigation trajectories,

either in simulation [15] or real-data [16], [17]. More re-
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Fig. 3: Visual comparison of ROOM outputs compared to real data.

Left: Real bronchoscopy data captured from a continuum robot showing
specular highlights from wet mucosal surfaces and directional lighting.
Center: ROOM’s photorealistic rendering using Blender’s path tracing with
Principled BSDF shaders, accurately reproducing tissue surface properties
and lighting conditions. Right: Naive PyBullet-based rendering lacking
photorealistic materials and lighting.

cent approaches have instead proposed to learn navigation

policies using reinforcement learning in simulation envi-

ronments [18], [19]. However, these approaches decouple

physics simulation and photorealism, which can limit the

performance of the navigation policies. Instead, ROOM aims

to bridge these challenges by presenting a unified framework

that enables visually-accurate data collection in physically-

realistic settings.

III. METHOD

A. Overview

ROOM provides a comprehensive simulation framework

for generating photorealistic bronchoscopy training data us-

ing continuum robots. The system consists of four main

components: (1) continuum robot modelling with realistic

kinematic constraints, (2) physics simulation with calibrated

tissue interactions, (3) anatomical reconstruction and trajec-

tory planning, and (4) photorealistic rendering with endo-

scopic artifacts. We describe each component in detail below.

B. Continuum Robot Modelling

The bronchoscope is modelled as a flexible, cable-driven

continuum robot with constant curvature bending [20], as

shown in Fig. 4. The system has three degrees of freedom

matching clinical control interfaces: tendon actuation for

bending curvature (q1 ∈ [−0.008, 0.008] m), axial rotation

determining the bending plane (q2 ∈ R rad), and linear

insertion depth (q3 ∈ R m).

Following Cosserat rod theory, the robot’s configuration at

position s along its length is described by position r(s) ∈ R
3

and orientation R(s) ∈ SO(3):

d
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R
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Fig. 4: Continuum robot model used in ROOM simulation. The
bronchoscope is modelled as a flexible, cable-driven continuum robot with
constant curvature bending and three degrees of freedom: tendon actuation
for bending curvature (q1), axial rotation for bending plane (q2), and linear
insertion depth (q3). The physics-based simulation incorporates realistic
friction models, actuator noise, and collision dynamics calibrated to clinical
bronchoscope behaviour.

where l = 50 × 10−3 m is the flexible segment length and

γ = 1.75 × 10−3 m relates to the robot’s cross-sectional

properties.

Physics-Based Simulation. We implement the continuum

robot dynamics in PyBullet, as it is a lightweight physics

simulator that do not impose significant hardware require-

ments. The simulation incorporates three critical aspects:

Friction Model. We use Coulomb friction with coefficients

calibrated from bronchoscope-tissue measurements: static

friction µs = 0.3 and dynamic friction µd = 0.25. These

values produce realistic stick-slip behaviour during naviga-

tion, particularly at airway bifurcations.

Actuator Noise. Real bronchoscopes exhibit control imper-

fections from mechanical compliance and communication

delays. We model stochastic time delays ∆t ∼ U(0, 0.1) sec-

onds applied to all control inputs, and magnitude-dependent

scaling errors:

q1(t) = q1,cmd(t) ·

(

1 + 0.05 ·
|q1,cmd(t)|

q1,max

)

(4)

q2(t) = q2,cmd(t) ·

(

1 + 0.05 ·
|q2,cmd(t)|

2π

)

(5)

These distortions model tendon stretching and mechanical

backlash, producing the characteristic “hunting” behaviour

observed in clinical practice.

Collision Model. We implement soft contact with

penetration-dependent normal forces and velocity damping,

ensuring stable simulation while capturing the compliant

nature of both robot and tissue surfaces.

C. Anatomical Reconstruction and Data Synthesis

CT Scan Preprocessing. Patient-specific anatomical mod-

els are extracted from clinical CT scans through an au-

tomated pipeline. A modified 3D U-Net trained on anno-

tated bronchial datasets segments the airway lumen. The

segmentation produces binary masks that undergo marching

cubes surface extraction, followed by Laplacian smoothing to

balance anatomical accuracy with mesh quality requirements

for downstream geometric processing.

Automated Data Collection. To automatically collect data

within the airways, we generate nominal, collision-free tra-

jectories by extracting the medial axis from the reconstructed



signed distance field (SDF) representation of the airway ge-

ometry (see Fig. 2). Our approach initiates surface sampling

points and traces along the SDF gradient ∇φ(x) in the

inward normal direction from the airway surface. Following

the grassfire analogy [21], we consider trajectories x(t) that

propagate inward from the boundary with motion ẋ(t) =
−n(t), where n(t) is the inward normal. Medial axis points

are identified at locations where the gradient exhibits sign

changes, corresponding to regions where d
dt
[∇φ(x(t))] · n̂ =

0, indicating rapid variations in the SDF gradient magnitude.

We further leverage the second derivative ∇2φ(x) to detect

these critical locations, as it exhibits pronounced spikes at

medial axis positions where gradient transitions occur.

The resulting medial axis representation forms a struc-

tured navigation graph that captures the airway centerline

topology. Trajectory sampling is then performed along this

extracted skeletal structure, with adaptive density increases at

bifurcation points and high-curvature regions where the SDF

exhibits significant geometric complexity, ensuring compre-

hensive coverage of areas most critical for vision-based

navigation. We use these poses as collision-free waypoints,

which an inverse kinematics controller tracks to produce

target 6 DoF poses, sampled at 10 Hz. These poses are used

to render photorealistic data streams.

Multi-Modal Data Rendering. For each target pose, we syn-

thesise synchronised data streams: RGB images (600×600),

metric and relative depth maps, surface normals, optical

flow fields, and point clouds. All outputs include calibration

parameters and timestamps in a standard format (see Fig. 5.

The rendering pipeline utilises Blender’s Principled BSDF

shader system with physically-based material properties in-

cluding base colour, metallic, and roughness maps to achieve

photorealistic tissue appearance. We additionally model the

distinct directional lighting of the bronchoscope by attaching

a point light source with exponential falloff to the tip. The

procedural material layers ensure consistent tissue properties

across the bronchial tree geometry as shown based on a com-

parison across different images in Fig. 3, while maintaining

computational efficiency for large-scale dataset generation.

For synthesising the other modalities we use multi-pass

rendering through Blender’s layers system: depth information

is extracted via the Z-buffer, surface normals are computed

from geometry derivatives, and optical flow is calculated

through inter-frame motion vectors.

Sensor Noise Modelling. Finally, to accurately reproduce

noise characteristics of real bronchoscopy RGB images, we

employ a frequency-domain system identification approach.

Given real endoscopic data Ireal, we extract the noise com-

ponent through bilateral filtering as shown in Fig. 2:

nreal = Ireal − BF(Ireal) (6)

We then analyse the noise spectrum through its Fourier

transform Nreal(ω) = F{nreal} and characterize the fre-

quency distribution by the power spectral density P (ω) =
|Nreal(ω)|

2. For synthetic data generation, we shape the white
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Fig. 5: ROOM pipeline output folder structure. The framework generates
synchronized multi-modal sensor data organized by patient anatomy and
sequence. Each sequence contains RGB images (600×600), metric depth
maps, surface normals, optical flow fields, point clouds, ground-truth poses,
and calibration parameters with timestamps.

noise w to match this spectrum:

nsynth = F−1

{

F{w} ·
√

P (ω)
}

(7)

The final synthetic RGB image combines the rendered output

with the synthesised noise: Isynth = Irendered+β ·nsynth, where

β controls the noise amplitude to match medical sensor

characteristics. This approach ensures our synthetic data ex-

hibits the same noise statistics as real bronchoscopy imagery,

which we observed is crucial for assessing monocular depth

estimation performance.

IV. APPLICATIONS

We demonstrate ROOM’s data for two canonical tasks in

medical robotics: multi-view pose estimation and monocular

depth estimation evaluation. Additionally, we demonstrate

applications of the synthesised data for fine-tuning depth

estimation models, as well as potential navigation tasks.

A. Task 1: Multi-View Pose Estimation

The first task is camera pose estimation from multiple

views, a fundamental task in medical robotics that underpins



Method RRA@5° ↑ RTA@5° ↑ AUC@30° ↑

COLMAP [22] 41.00 0.07 16.91
ORB-SLAM3 [23] 71.67 0.17 42.74
DUSt3R [24] 63.00 0.21 54.90
VGGT [25] 79.00 0.25 69.09

TABLE I: Comparison of methods across five sequences (Seq0–Seq4).
Reported values are means across all sequences. Metrics: Relative Rotation
Accuracy (RRA@5°), Relative Translation Accuracy (RTA@5°), and Area
Under the Curve (AUC@30°). Higher is better (↑).

downstream bronchoscopy use-cases such as 3D reconstruc-

tion. The repetitive branching patterns and limited texture

of airways, pose particular challenges for evaluating existing

visual odometry and structure-from-motion methods.

For evaluation, we synthesised realistic reference paths

along the airways, to obtain photorealistic RGB images

and ground truth poses. We evaluated four methods:

ORB-SLAM [23] as a classical feature-based baseline,

COLMAP [22] with sequential matching constraints, and

DUSt3R [24] and VGGT [25] as learning-based methods.

We measure the Relative Rotation Accuracy (RRA@5°),

Relative Translation Accuracy (RTA@5°), and Area Under

the Curve (AUC@30°), as done in prior work [25].

Our results are reported in Tab. I. We report that classical

methods achieve only 41% RRA and 0.07% RTA tracking

success due to insufficient texture, while DUSt3R trained

on natural image data reaches 63% RRA and 0.37% RTA

on held-out sequences. VGGT demonstrates superior per-

formance with 79% RRA and 0.5% RTA, representing a

substantial improvement over classical approaches. These

results align with recent findings in endoscopic domains:

ORB-SLAM3 achieves only 25% frame localisation success

on real colonoscopy sequences [26], while other methods

such as CudaSIFT-SLAM shows 70% improvement over

ORB-SLAM3 in colonoscopy mapping coverage [27]. Simi-

larly, pose estimation studies in endoscopy report challenges

with classical methods, with specialised endoscopic pose

estimation achieving errors of 1.43 mm in bronchoscopy

and 3.64 mm in colonoscopy [28]. The higher performance

of VGGT on our bronchoscopy data is consistent with

its demonstrated advantages over DUSt3R and traditional

methods across multiple benchmarks [25].

B. Task 2: Monocular Depth Estimation

Monocular depth estimation is another important task in

medical robotics [4]. This is primarily motivated by the chal-

lenges of using stereo configurations or structured light under

the limited size constraints—bronchoscopes range from 2.4–

6.2 mm in outer diameter [29].

We compare different pre-trained depth estimation models

using ROOM-generated data. We evaluate four general-

purpose foundation models for monocular depth, namely

Metric3D-V2 [30], Depth Anything V2 (monocular and

relative variants) [31], and UniDepth (monocular and relative

variants) [32]. Additionally, we evaluate three endoscopy-

specialized methods: EndoDAC (transfer from Depth Any-

thing) [33], EndoOmni (transfer from DINOv2) [34], and

Method L1 Error ↓ Abs Rel ↓

Metric3DV2 [30] 0.095 0.440

DAV2 (Metric) [31] 0.097 0.459

DAV2 (Relative)† [31] 0.113 0.486

EndoDAC [33] 0.094 0.432

UniDepth [32] 0.106 0.476

EndoOmni [34] 0.092 0.428

BREA-DEPTH [35] 0.091 0.421

Method RMSE ↓ δ1 (%) ↑

Metric3DV2 [30] 0.145 27.5

DAV2 (Metric) [31] 0.147 28.5

DAV2 (Relative)† [31] 0.179 28.2

EndoDAC [33] 0.144 29.6

UniDepth [32] 0.166 27.1

EndoOmni [34] 0.142 30.2

BREA-DEPTH [35] 0.141 30.8

TABLE II: Monocular depth estimation results on ROOM synthetic

bronchoscopy data. †Scale-aligned relative depth predictions. All baseline
methods exhibit high absolute relative errors (0.44–0.49) and low δ1

accuracy scores (26–28%), indicating the difficulty of the bronchoscopy
domain. BREA-DEPTH achieves slightly better accuracy and δ1, reflecting
improved lumen localization, though the extreme depth ranges (2–50 mm)
remain challenging.

BREA-Depth (transfer from Depth Anything V2) [35]. Each

model is evaluated using standard depth estimation metrics:

L1 error, RMSE, absolute relative error, and delta accuracy

thresholds (δ < 1.25i for i ∈ {1, 2, 3}).

The quantitative results in Tab. II reveal a critical gap

between absolute and relative depth performance. While

UniDepth achieves superior L1 error (0.0103 m) and RMSE

(0.0160 m), all methods exhibit poor relative accuracy with

absolute relative errors of 0.44-0.49 and δ1 scores below

28%—far from the 80-90% achieved on natural images.

The error maps in Fig. 6 expose systematic failure modes.

Errors cluster at specular highlights where wet mucosal

surfaces create photometric inconsistencies, and at geomet-

ric discontinuities including bifurcations where the tubular

structure transitions. Furthermore, DAV2 variants show more

diffuse error patterns, while Metric3DV2 and UniDepth

maintain better structural coherence but fail at boundaries.

The repetitive branching geometry provides insufficient tex-

ture gradients for reliable depth cues, particularly evident in

the uniform error distribution across smooth airway walls.

We conclude that the bronchoscopy environment violates

core assumptions of natural image depth estimation pho-

tometric consistency, sufficient texture variation, and man-

ageable depth ranges necessitating domain-specific training

approaches like ROOM’s synthetic data generation to bridge

this performance gap.

C. Task 3: Fine-tuning Monocular Depth Models

The results reported in the monocular depth estimation

task suggest that the poor performance is due to a domain gap

in the training and testing data. Therefore, we proposed to

assess if fine-tuning monocular depth models using synthetic

ROOM data could provide performance boosts.



Fig. 6: Comparative monocular depth estimation results on ROOM synthetic bronchoscopy sequences. Top rows show L1 error maps between
predicted depth estimation and ground truth depth, where warmer colours indicate higher absolute errors, while bottom rows display corresponding RGB
inputs with challenging specular highlights and limited texture. Five state-of-the-art models are evaluated: Metric3DV2, Depth Anything V2 (DAV2
Monocular/Relative), Unidepth, EndoOmni, EndoDAC, BREA-Depth, revealing significant performance degradations due to the realistic sensor noise from
the simulator and systematic errors concentrated at geometric transitions and specular regions.

TABLE III: Comparison of original and fine-tuned models on an external

bronchoscope dataset. Bold indicates improvements over the original
model after fine-tuning.

Method L1 ↓ Abs Rel ↓ RMSE ↓ δ1 (%) ↑

O
ri

g
in

al UniDepth [32] 0.008 0.545 0.010 19.77

DAV2 [31] 0.020 0.382 0.024 42.15

BREA-D [35] 0.014 0.197 0.019 65.39

F
in

e-

tu
n
ed

UniDepth [32] 0.004 0.277 0.006 59.87

DAV2 [31] 0.015 0.291 0.020 55.42

BREA-D [35] 0.013 0.192 0.018 67.70

For this task we used three models: the general-use

UniDepth and DepthAnything V2 (DAV2), as well as the

bronchoscopy-specialised BREA-D. Furthermore, to avoid

testing the models using a test set within the same data

distribution of the fine-tuning data, we evaluated them on

an external bronchoscope dataset with phantom-based depth

ground truth [36]. We compare their performance before and

after fine-tuning using the same depth estimation metrics

used in Task 2.

We report the results for the different metrics in Tab. III

using ten selected representative image-depth pairs. Our re-

sults indicate that fine-tuning on synthetic ROOM-generated

data improves BREA-Depth across all metrics, with δ1 ac-

curacy increasing from 65.39% to 67.70% (a relative gain of

3.5%). These improvements are also reflected in qualitative

comparisons between the pre-trained and fine-tuned models

shown in Fig. 7. We report improvements in the fine-tuned

models even when tested on real bronchoscopy images that

were part of neither the pre-training nor fine-tuning data.

Our results demonstrate that the synthetic data produced

by ROOM provides effective supervision for bridging do-

main gaps and recovering performance under challenging

bronchoscopic conditions, suggesting promising avenues to

fine-tune general models in this medical domain.

D. Demonstration: Vision-Based Navigation

Lastly, we qualitatively demonstrate the use of ROOM’s

data for bronchoscope navigation. We implemented a vision-

based navigation method based on a sampling-based plan-

ner [37], using the predicted depth maps to generate a local

point cloud map used for collision checking.

Our preliminary results demonstrate that traditional plan-

ners can provide sensible navigation plans. Fig. 8 shows

example output paths predicted from single frames, showing

the path from the current camera pose (image centre) to the

farthest visible point. The 3D visualisations on the right also

help visualise the plans with respect to the robot’s volume

(coloured spheres). While preliminary, these results suggest

alternative navigation approaches that can be developed

based on models fine-tuned with ROOM data.

V. DISCUSSION

Our results show that the synthetic data produced by

ROOM can contribute to overcome challenges that well-

established methods in multi-view pose estimation and



Fig. 7: Monocular depth estimation examples of pre-trained models and fine-tuned on ROOM. We show examples on a phantom-based dataset with
ground truth [36] as well as real images. Please note that the real image does not have depth ground truth available.

monocular depth estimation face in the bronchoscopy do-

main. However, there are limitations and aspects for future

improvement of the ROOM framework.

First, the anatomical reconstruction pipeline depends on

CT scan quality, and may fail with pathological cases ex-

hibiting severe occlusions or abnormal geometries. However,

this also presents an opportunity to extend the framework to

other endoscopic procedures where CT scans are available,

such as colonoscopy and arthroscopy.

Second, while ROOM is built on top of the PyBullet

simulator to provide a physically-accurate environment for

data collection, it might not fully reflect the contact and

deformable dynamics of real bronchia. Enabling support

for tissue deformation modelling as well as physiological

dynamics such as respiratory motion might also provide

realism to the synthesised data.

Lastly, the physical simulator can enable future research

in closed-loop navigation systems, enabling its use for

validating traditional planners, or for developing imitation

learning or reinforcement learning-based navigation policies,

as proposed by recent works [19].

VI. CONCLUSIONS

We introduced ROOM, a physics-based simulation frame-

work that addresses the critical data scarcity challenge

in bronchoscopy robotics. By integrating patient-specific

anatomical reconstruction, continuum robot physics, and

photorealistic rendering at medically relevant scales, ROOM

enables generation of diverse training datasets that capture

the complexity of clinical procedures.

Our evaluation in established tasks such as multi-view

pose estimation and monocular depth estimation reveals that

the bronchoscopy domain presents significant challenges for

existing methods. However, we showed that the synthetic

data generated by ROOM can provide avenues for fine-tuning

them and improve performance in real settings.

The ROOM framework will be made available for the

community. We expect that its modular architecture will

enable researchers to test new CT scans, substitute compo-

nents, or swap rendering engines, physics simulators, or robot

models, opening new avenues for medical robotics research.

REFERENCES

[1] P. E. Dupont, N. Simaan, H. Choset, and C. D. Rucker, “Continuum
Robots for Medical Interventions,” Proceedings of the IEEE, 2022.

[2] K. Greff, F. Belletti, L. Beyer, C. Doersch, Y. Du, D. Duckworth,
D. J. Fleet, D. Gnanapragasam, F. Golemo, C. Herrmann, T. Kipf,
A. Kundu, D. Lagun, I. Laradji, H.-T. D. Liu, H. Meyer, Y. Miao,
D. Nowrouzezahrai, C. Oztireli, E. Pot, N. Radwan, D. Rebain,
S. Sabour, M. S. M. Sajjadi, M. Sela, V. Sitzmann, A. Stone, D. Sun,
S. Vora, Z. Wang, T. Wu, K. M. Yi, F. Zhong, and A. Tagliasacchi,
“Kubric: A Scalable Dataset Generator,” in IEEE Int. Conf. Computer

Vision and Pattern Recognition, 2022.

[3] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor,
and S. Scherer, “TartanAir: A Dataset to Push the Limits of Visual
SLAM,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems

(IROS), 2020.



Fig. 8: Vision-based navigation examples. We demonstrate qualitative
results of the relative monocular depth predictions (scaled with ground-
truth scale), as input for a sampling-based local planner. Left: projection of
the collision-free path. Right: 3D visualisation of the path, with the spheres
indicating the collision-bodies used by the planner.

[4] A. Rau, S. Bano, Y. Jin, P. Azagra, J. Morlana, R. Kader, E. Sander-
son, B. J. Matuszewski, J. Y. Lee, D.-J. Lee, E. Posner, N. Frank,
V. Elangovan, S. Raviteja, Z. Li, J. Liu, S. Lalithkumar, M. Islam,
H. Ren, L. B. Lovat, J. M. Montiel, and D. Stoyanov, “SimCol3D
— 3D reconstruction during colonoscopy challenge,” Medical Image

Analysis.
[5] Q. Yu, M. Moghani, K. Dharmarajan, V. Schorp, W. C.-H. Panitch,

J. Liu, K. Hari, H. Huang, M. Mittal, K. Goldberg, and A. Garg,
“ORBIT-Surgical: An Open-Simulation Framework for Learning Sur-
gical Augmented Dexterity,” in IEEE Intl. Conf. on Robotics and

Automation (ICRA), 2024.
[6] E. Coevoet, T. Morales-Bieze, F. Largillière, Z. Zhang, M. Thieffry,

M. Sanz-Lopez, B. Carrez, D. Marchal, O. Goury, J. Dequidt, and
C. Duriez, “Software toolkit for modeling, simulation and control of
soft robots,” Advanced Robotics, 2017.

[7] S. M. H. Sadati, S. E. Naghibi, A. Shiva, B. Michael, L. Renson,
M. Howard, C. D. Rucker, K. Althoefer, T. Nanayakkara, S. Zschaler,
C. Bergeles, H. Hauser, and I. D. Walker, “TMTDyn: A Matlab
package for modeling and control of hybrid rigid–continuum robots
based on discretized lumped systems and reduced-order models,” Intl.

J. of Robot. Res., 2021.
[8] L. M. Sutherland, P. W. Middleton, A. Russell, M. Wijenayake,

N. Maddern, and G. J. Maddern, “Surgical Simulation: A Systematic
Review,” Annals of Surgery, 2006.

[9] C. H. Park, M. J. Ryou, and C. C. Thompson, “Simulation in
Endoscopy: Practical Educational Strategies to Improve Learning,”
World Journal of Gastroenterology, 2019.

[10] Y. Liu, C. Li, C. Yang, and Y. Yuan, “EndoGaussian: Real-time
Gaussian Splatting for Dynamic Endoscopic Scene Reconstruction,”
arXiv preprint arXiv:2401.12561, 2024.

[11] C. Li, H. Liu, Y. Liu, B. Y. Feng, W. Li, X. Liu, Z. Chen, J. Shao,
and Y. Yuan, “Endora: Video Generation Models as Endoscopy Sim-
ulators,” in Med. Image Comput. Comput. Assist. Interv. (MICCAI),
2024.

[12] L. Ros-Freixedes, A. Gao, N. Liu, M. Shen, and G.-Z. Yang, “Design
optimization of a contact-aided continuum robot for endobronchial
interventions based on anatomical constraints,” International Journal

of Computer Assisted Radiology and Surgery, 2019.
[13] Q. Tian, Z. Chen, H. Liao, X. Huang, B. Yang, L. Li, and H. Liu,

“PANS: Probabilistic Airway Navigation System for Real-time Robust
Bronchoscope Localization,” in Med. Image Comput. Comput. Assist.

Interv. (MICCAI), 2024.
[14] J. Deng, P. Li, K. Dhaliwal, C. X. Lu, and M. Khadem, “Feature-based

Visual Odometry for Bronchoscopy: A Dataset and Benchmark,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2023.

[15] J. Borrego-Carazo, C. Sánchez, D. Castells-Rufas, J. Carrabina, and
D. Gil, “BronchoPose: an analysis of data and model configuration for
vision-based bronchoscopy pose estimation,” Computer Methods and

Programs in Biomedicine, 2023.
[16] V. e. a. Vu, “BM-BronchoLC: A rich bronchoscopy dataset for

anatomical landmarks and lung cancer lesion recognition,” Scientific

Data, 2024.
[17] R. e. a. Hao, “UAAL Dataset: Upper Airway Anatomical Landmark

Dataset for Automated Bronchoscopy and Intubation,” Figshare, 2024.
[18] J. Zhang, L. Liu, P. Xiang, Q. Fang, X. Nie, H. Ma, J. Hu, R. Xiong,

Y. Wang, and H. Lu, “AI Co-Pilot Bronchoscope Robot,” Nature

Communications, 2024.
[19] J. Zhao, H. Chen, Q. Tian, J. Chen, B. Yang, and H. Liu, “Bron-

choCopilot: Towards Autonomous Robotic Bronchoscopy via Mul-
timodal Reinforcement Learning,” arXiv preprint arXiv:2403.01483,
2024.

[20] D. Hanley, F. Alambeigi, and M. Khadem, “On the Benefits of
Hysteresis in Tendon Driven Continuum Robots,” in IEEE Intl. Conf.

on Robotics and Automation (ICRA), 2025.
[21] A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, and A. Telea,

“3D skeletons: A state-of-the-art report,” Computer Graphics Forum,
2016.

[22] J. L. Schönberger and J.-M. Frahm, “Structure-from-Motion Revis-
ited,” in IEEE Int. Conf. Computer Vision and Pattern Recognition,
2016, pp. 4104–4113.

[23] “ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-
Inertial and Multi-Map SLAM.”

[24] S. Wang, V. Leroy, Y. Cabon, B. Chidlovskii, and J. Revaud, “DUSt3R:
Geometric 3D Vision Made Easy,” in IEEE Int. Conf. Computer Vision

and Pattern Recognition, 2024.
[25] J. Wang, M. Chen, N. Karaev, A. Vedaldi, C. Rupprecht, and

D. Novotny, “VGGT: Visual Geometry Grounded Transformer,” in
IEEE Int. Conf. Computer Vision and Pattern Recognition, 2025.

[26] P. Azagra et al., “Endomapper dataset of complete calibrated en-
doscopy procedures,” Scientific Data, 2023.

[27] R. Elvira, J. D. Tardós, and J. M. Montiel, “CudaSIFT-SLAM:
multiple-map visual SLAM for full procedure mapping in real human
endoscopy,” arXiv preprint arXiv:2405.16932, 2024.

[28] Z. Li et al., “Pose estimation via structure-depth information from
monocular endoscopy images sequence,” Optica Publishing Group,
2024.

[29] J. Klapper, S. Raja, N. Ninan, and S. Shofer, “Bronchoscopy,” TSRA
Primer in Cardiothoracic Surgery, The American Association for
Thoracic Surgery, 2024.

[30] M. Hu, W. Yin, C. Zhang, Z. Cai, X. Long, H. Chen, K. Wang, G. Yu,
C. Shen, and S. Shen, “Metric3D v2: A Versatile Monocular Geometric
Foundation Model for Zero-Shot Metric Depth and Surface Normal
Estimation,” IEEE Trans. Pattern Anal. Mach. Intell., 2024.

[31] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, and H. Zhao,
“Depth Anything V2,” in Advances in Neural Information Processing

Systems, 2024.
[32] L. Piccinelli, Y.-H. Yang, C. Sakaridis, M. Segu, S. Li, L. Van Gool,

and F. Yu, “UniDepth: Universal Monocular Metric Depth Estimation,”
in IEEE Int. Conf. Computer Vision and Pattern Recognition, 2024.

[33] B. Cui, M. Islam, L. Bai, A. Wang, and H. Ren, “Endodac: Efficient
adapting foundation model for self-supervised depth estimation from
any endoscopic camera,” in International Conference on Medical

Image Computing and Computer-Assisted Intervention. Springer,
2024, pp. 208–218.

[34] Q. Tian, Z. Chen, H. Liao, X. Huang, L. Li, S. Ourselin, and
H. Liu, “EndoOmni: Zero-shot cross-dataset depth estimation in
endoscopy by robust self-learning from noisy labels,” arXiv preprint

arXiv:2409.05442, 2024.
[35] F. X. Zhang, E. Mackute, M. Kasaei, K. Dhaliwal, R. Thomson,

and M. Khadem, “BREA-Depth: Bronchoscopy Realistic Airway-
geometric Depth Estimation,” in Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2025, 2025.
[36] M. Visentini-Scarzanella, T. Sugiura, T. Kaneko, and S. Koto, “Deep

monocular 3D reconstruction for assisted navigation in bronchoscopy,”
International journal of computer assisted radiology and surgery,
vol. 12, pp. 1089–1099, 2017.

[37] J. Jankowski, L. Brudermüller, N. Hawes, and S. Calinon, “VP-STO:
Via-point-based Stochastic Trajectory Optimization for Reactive Robot
Behavior,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
2023, pp. 10 125–10 131.


	INTRODUCTION
	Related Work
	Method
	Overview
	Continuum Robot Modelling
	Anatomical Reconstruction and Data Synthesis

	Applications
	Task 1: Multi-View Pose Estimation
	Task 2: Monocular Depth Estimation
	Task 3: Fine-tuning Monocular Depth Models
	Demonstration: Vision-Based Navigation

	Discussion
	Conclusions
	References

